If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2=44
We move all terms to the left:
20x^2-(44)=0
a = 20; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·20·(-44)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{55}}{2*20}=\frac{0-8\sqrt{55}}{40} =-\frac{8\sqrt{55}}{40} =-\frac{\sqrt{55}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{55}}{2*20}=\frac{0+8\sqrt{55}}{40} =\frac{8\sqrt{55}}{40} =\frac{\sqrt{55}}{5} $
| s-6=-14 | | -5(-2x+9)=-25 | | -2x+6+5x-2=31 | | 5(y+8)=65 | | 15p=+-3p | | n÷10-20=0 | | 4+6r-7=3r+5r-11 | | -9a-20a-14=-15 | | -15b+21=-729 | | -8b-7=8-6b-3 | | 16t^2+38=0 | | r+9=-22 | | 3a+15=-24a+2 | | -5-3w=w | | 8(1+2x)+7x=153 | | 7(2+3x=77 | | 4x+8=3×+15= | | 5q+5q-10q+5q=20 | | -3(7p+5)=-1695 | | 8y+5=3y+15 | | -8x+13-2x=-6x+4+7x | | 2r^2+23=14r | | -4x+12=5x+3 | | 12c-9c-2c=5 | | 27=(v+4)/2 | | 28x-5=7+15x | | 224-y=267 | | 11c+2c-11c-c+3c=8 | | 8q+6=806 | | 5x−10+3x+2=16 | | 10b+3-b+6=36 | | 4(10+2x)=48 |